Entangling power and operator entanglement in qudit systems

نویسندگان

  • Xiaoguang Wang
  • Barry C. Sanders
  • Dominic W. Berry
چکیده

We establish the entangling power of a unitary operator on a general finite-dimensional bipartite quantum system with and without ancillas, and give relations between the entangling power based on the von Neumann entropy and the entangling power based on the linear entropy. Significantly, we demonstrate that the entangling power of a general controlled unitary operator acting on two equal-dimensional qudits is proportional to the corresponding operator entanglement if linear entropy is adopted as the quantity representing the degree of entanglement. We discuss the entangling power and operator entanglement of three representative quantum gates on qudits: the SUM, double SUM, and SWAP gates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Matrix realignment and partial-transpose approach to entangling power of quantum evolutions

Given a unitary operator, in the context of quantum information 1 , one may ask how much entanglement capability the operator has. The entangling unitary operator can be considered as a resource for quantum-information processing, and it becomes important to quantitatively describe unitary operators. Recently, there is increasing interest in the entanglement capabilities of quantum evolution an...

متن کامل

Matrix rearrangement approach for the entangling power with hybrid qudit systems

We extend the former matrix rearrangement approach of the entangling power to the general cases, without requirement of same dimensions of the subsystems. The entangling power of a unitary operator is completely determined by its realignment and partial transposition. As applications, we calculate the entangling power for the Ising interaction and the isotropic Heisenberg interaction in the hyb...

متن کامل

Statistical bounds on the dynamical production of entanglement

Abstract We present a random-matrix analysis of the entangling power of a unitary operator as a function of the number of times it is iterated. We consider unitaries belonging to the circular ensembles of random matrices (CUE or COE) applied to random (real or complex) non-entangled states. We verify numerically that the average entangling power is a monotonic decreasing function of time. The s...

متن کامل

The disentangling power of unitaries

We define the disentangling power of a unitary operator in a similar way as the entangling power defined by Zanardi et al. [P. Zanardi, C. Zalka, L. Faoro, Phys. Rev. A 62 (2000) 030301(R), quant-ph/0005031]. A general formula is derived and it is shown that both quantities are directly proportional. All results concerning the entangling power can simply be translated into similar statements fo...

متن کامل

Entanglement as a signature of quantum chaos.

We explore the dynamics of entanglement in classically chaotic systems by considering a multiqubit system that behaves collectively as a spin system obeying the dynamics of the quantum kicked top. In the classical limit, the kicked top exhibits both regular and chaotic dynamics depending on the strength of the chaoticity parameter kappa in the Hamiltonian. We show that the entanglement of the m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003